Fall 2013 Interstellar Solutions

- 51. Answer (B): By Euler's formula the expression $e^{i2\pi j\alpha} = 1$ holds if $2\pi j\alpha$ is an integer multiple of 2π . Hence $j\alpha$ must be rational and this is only true when j = 0. Hence there is only one solution.
- 52. Answer (C): To determine a champion, n-1 teams must be eliminated. This requires n-1 games.
- 53. Answer (D): Setting up a Venn diagram, the number of students taking some AP class is 62. Therefore 38 students are not taking a class in these three areas.
- 54. Answer (C): Since the given ordered pairs for r(x) include two changes of sign of the slope, r(x) is uniquely determined and p(x) may be expressed as p(x) = r(x) + C(x-1)(x-2)(x-3)(x-4), where C is a constant. Set x to 5, then -36 = p(5) = r(5) + 24C, so $C = -\frac{3}{2}$. This is the value of the coefficient of x^4 in p(x).

\mathbf{OR}

Since the value of x provided are ascending adjacent integers, take four rounds of successive differences in the values for p(x) and divide by 4!:

 $\frac{-36}{24} = -\frac{3}{2}$. This solution method requires knowledge of calculus, but it seems reasonable to assume that it takes longer to apply than the solution method above.

Note: The functions are:

$$r(x) = -x^3 + 8x^2 - 18x + 15$$
 and
 $p(x) = -\frac{3}{2}x^4 + 14x^3 - \frac{89}{2}x^2 + 57x - 21$

55. Answer (D): Combining logarithms and exponentiating results in

$$log_{10}(8 \sin x) + log_{10}(5 \cos x) = 1,$$

$$log_{10}(40 \sin x \cos x) = 1,$$

$$40 \sin x \cos x = 10.$$

Fall 2013 Interstellar Solutions

Applying the double angle for sine and simplifying gives,

$$20\sin 2x = 10,$$
$$\sin 2x = \frac{1}{2}.$$

Because x is between $\frac{\pi}{4}$ and $\frac{\pi}{2}$, we have that 2x is between $\frac{\pi}{2}$ and π . Therefore $2x = \frac{5\pi}{6}$, and $x = \frac{5\pi}{12}$.

- 56. Answer: 9. In order for $\frac{3^n}{n^3}$ to be an integer, *n* must be a power of 3, say $n = 3^m$. Substituting $3^{3^m}/3^{3m} = 3^{3^m-3m} = 3^3$. Then $3^m - 3m = 3$. Testing, m = 2, so $n = 3^2 = 9$.
- 58. Answer (C): Let us depict all pairs of x and y between 1 and 2011, inclusive, as two-dimensional points forming a square. The points for which x = y form a diagonal of the square and there are 2011 such points. The points for which |x y| = 1 form two straight lines immediately above and below that diagonal, each of which consists of 2010 points. The points for which |x y| = 2 form two straight lines two steps above and below that diagonal, each of which consists of 2009 points. Therefore, the answer is $(2*2009+2*2010+2011)/2011^2 \approx 0.0025$.
- 59. Answer (D): If the first player draws a card labeled x and the second player draws a card labeled y the second player receives xy pennies. This occurs with probability 1/(25 * 25). The expected value of the game is then $\sum_{x=1}^{25} \sum_{y=1}^{25} xy \cdot 1/(25 * 25) = \frac{1}{25 \cdot 25} \sum_{x=1}^{25} \frac{x^{25}}{\sum_{y=1}^{2}} y = \frac{1}{25 \cdot 25} \frac{25 \cdot 26}{2} \frac{25 \cdot 26}{2} = 13 \cdot 13 = 169.$
- 60. Answer (D): Triangle ACD is a 3-4-5 right triangle so $\triangle ABE \sim \triangle ADC$ and $BD = \frac{3}{4}AB$. Because $\triangle ABE$ is half $\triangle ACD$, $\frac{1}{2}(AB)(BE) = \frac{1}{2}(\frac{1}{2})(CD)(AD) = \frac{1}{4}(12) = 3$. Therefore $\frac{1}{2}AB(\frac{3}{4}AB) = 3$, and $AB = 2\sqrt{2}$.

2011AMC1012JG12S-eps-converted-to.pdf

61. Answer (A): Solving for x gives

$$x = \frac{2013}{1 + 2 + 3 + \dots + 2012} = \frac{2013}{\frac{2012 \cdot 2013}{2}} = \frac{1}{1006}$$

Therefore

$$2013x + 2014x + 2015x + \dots + 4024x$$

Fall 2013 Interstellar Solutions

$$=x(1+2+3+\dots+4024) - (x+2x+3x+\dots+2012x)$$
$$=\frac{1}{1006} \cdot \frac{4024 \cdot 4025}{2} - 2013$$
$$=2 \cdot 4025 - 2013 = 6037.$$